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ABSTRACT

An algorithm is presented for the general (not necessarily

convex or concave) quadratic programming problem over a

litiearly constrained set. The algorithm is finitely

convergent and makes use of a convex quadratic progranming

method as a subroutine (like the quadratic simplex for instance).

The basic tool for this method is a facial decomposition for

polyhedral sets.



Section 1) Introductory Remarks

The term quadratic progranmning has now become class.ical both in

management and engineering sciences; it refers to the optimization ot a

quadratic objective function over a polyhedral set P in the n-dimensional

vector space . Usually, however, all that is meant is convex quadratic

progranmning, i.e. solving problems of either type:

a) minimize f(x) , subject to x s P (la)

or b) maximize g(x) , subject to x e P (lb)

where f is a convex function

g a concave function ,

and P a polyhedral set defined by say A x < b with A an m

by n matrix.

Convex quadratic programs are indeed very important because they appear

in practical applications and also because they represent a useful

approximation of more general convex programs.

There are other cases of linearly constrained quadratic programs,

however, (which also correspond to practical problems) namely the opposite

of (1) called here concave programming (quadratic) problems, i.e.

a) maximize f(x) , subject to x e P (2a)

or b) minimize g(x) , subject to x e P (2b)

A third class of quadratic program is the general one i'as it contains

both the convex and concave cases), where one seeks the optimum (maximum

and/or minimum) of a general quadratic function f(x) (not necessarily

convex or concave) over the polyhedral set P
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This paper focuses on this general case, presenting an algorithmic

principle based on some simple fundamental, properties of P . Several

versions of such algorithms are being tested in order Lo find appropri-

ate measures of efficiency for algorithms of this type.

Probably because it does not possess the many useful properties of

its convex special case, relatively little attention has been devoted to

Footnote the general case in the literature.--With no attempt to pres ., a complete

bibliography of the subject, let us mention the articles [ 9 , 10 ]

by Ritter who is apparently the first to have studied the non-convex

case, followed by Cottle and Mylander [5] and more recently Konno (7]. All

Footnote of these papers-/ are centered around the concept of cutting planes and [71

presents an interesting study of several types of cutting planes applicable to

non-convex quadratic programming, including the cuts introducud by Hoang

Tvi, in [ill for general concave programmifng and which have recently

received much attention in integer programming 1,3,6,8 ].

Our approach proceeds along different lines, however, as it is funda-

mentally oriented towards an enumerative decomposi.tjon into subproblems

Footnote of the original problem. /It makes use of th• si-called facial decomposi-

tion of the polyhedral set P , which leads to the construction of an

arborescence a~oni which one may search for the global optimwn; much as

for the branch and bound algorithms, the arborescence is used here to

isolate "candidates" (usually local optima) for the optimum which then

can be enumerated to identify the ovet-all best solution(s), i.e. the

global optimum(s).

In seccion 2 we list some useful properties of the linearly constrained

general quadratic programnming problem3. Section 3 then contains ýý brief

s~mw,.ary of the facial decompositiotn p-ocedure 4 ] and section £ý outlines

snme rolvart- mqthematical dpvPnnm,,-nts.
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Section 2) The structure of quadratic programs

We present below a list of the properties which lie at the crux of

the problem under consideration; all are straightforward observations

and do not require much mathematical insight. For simplicity we only con-

sider a bounded n-dimensional polyhedron P as feasible region and the

general quadratic problem (GQP) is defined by:

minimize f(x) , subject to x e P

where f is a quadratic function.

Call S the set of all optimal solutions x of GQP

Theorem I: If S C rel int (P) then f is strictly convex (i.e.,

positive definite) on Aff(P) and S consists of a

unique point x
4/f

Footnote Corollary 1.1:- If f is not strictly convex on P then f attains

its global minimum on the relative boundary of P .

Theorem 2: The relative boundary of an n-dimensional polyhedron P

is the union of its (n-l)-dimensional (closed) facets.

Theorem J: If f is convex (concave) on P then it is conve)x (con-

cave) on all the facets, and lower-dimensional faces F

of P .

Corollary 3.1: Since all faces of P are polyhedral, theorem 3 also

holds for any face of P.

Theorem 4: if x e P then x is either a vertex of P or x

belongs to the relative interior of some face of P

(including P itself).
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Corollary 4.1: Any optimal solution x of GQP satisfies theorem 4.

Theorem 5: Let F2 C_ F1 C P be faces of P , and let x E FI be

optimal, i.e.

f(x) . f(x) V x C FI

If x rel int (F )

then f(x) < f(x) , V x F2

Theorem 6: If f is concave on a face F C P then there exists a

vertex x of F such that

f(q) K f(x) , V x e F

Proofs: To 1: Along any 1-dimensional line, the quadratic function f

is either strictly concave, strictly convex or linear.

Hence, for every point ; e S and along any line L(x)

through , f must be convex or linear since

f(x) K f(x) , V x e L(x) but suppose that f is

a linear function along every line L(x) through x;

then on the relative boundary of V, there must exist

a minimal point x C (L(x) q S), and we iiave a contradic-

tion to the hypothesis; hence, f is strictly convex;

furthermore, a strictly convex function attains a unique

"'inimum x on any open set U(S) S for instance U = rel int(P);

hence, S = (x;. Q.E.D.

To 1.1: By contraposition of theorem I.

To 2: This is a classical result and the proof is omitted.

To_3: Immediate since F C P
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To 4: This is a classical result, too. The polyhedron P can

be decomposed into disjoint subsets 9V = rel int (F V)

where F runs over all faces of P (including P

itself);furthermore, since the relative interior of a

point is ill-defined, one has

P =Ycp fF~ I
where F are the vertices of P and F. the k-

dimensional faces of P , (U < k < n)

To 4.1: Immediate since x e P

To 5: Immediate since I2C F but F2 ( rel int (F

To 6: Proof omitted.

The above properties of GQP lead in a straightforward manner to the

algorithmic principle presented at the end of section 2.

In theorem 4 (its proof and corollary) one finds the germ of a con-

struction described below in greater detail.
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Section 3) The faces of a polyhedral set P .

Consider the system

Ax = b (3a)

x > 0 (3b)

with A an m by n + m matrix of rank m,

and set

M =l,2,...,n,n+l,...,n4in;

A subset I( M is called minimal if

(JXXi > !, Vi '- I]c [xlxi > 0, Vi M) =P

and for every 1 0 I, there exists a point x such that

X;i< 0, while xi > 0, Vi e I - Li ).

Geometrically, it may be seen that the minimal set I consists of the

indices i e I for which the affine set fxfx = 0, i e I) contains

at least one facet of the polyhedral set P defined by (3). Let

I be the minimal set of P.
0

Note that a minimal set I can be found by solving iteratively0

the following L.P. starting with I = M:

minimize xi , subject to xi .2>0 , Vi s I - (iO) (3c)

Ax = b

If the minimal value xi is < 0 then keep i in the set I; otherwise, if10 0

Xio. 0, then reduce the set I by eliminating its element io.
It is shown in [4] that after all elements i c M have been considered0

in (3c), the remaining set I = I0 is minimal.

Now the facial decomposition of an n-dimensional polyhedron P

simply consist in determing the minimal index set I = l(iI) corresponding

to each (n-l)-dimensional facet F(iI) (x C PIXi = 0, 1iC Io), the
11

set I = I(il,i 2 ) for each (n-2)-dimensional face
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F(il,i 2 ) (x C F(i )C P I xil xi2 = 0 C 1(i1)C 10

etc....; each index set I(il, ... Pi) characterizes a face F(i, ..... i)

F (i i) = eF x = "'" =X. 0 , Ax =b
qI q

X " 0 , Vi £ l(iI ... iq-1

which lies in the subspace Aff(F(il,...,iq)) defined by

X =X ... -x 0iI i2 lq

and, of course, one has

F(i 0 F(ili 2 ) j . DF(i1 ,... ,iq)

and Aff(F(i)) Z, Aff(F(i•• i""• ... , Aff(F(i .,

The complete facial decomposition of P therefore assumes a tree-

like structure beginning with a single node which corresponcs to the largest

face P (which contains all the other faces); from this node, one has

branches (as many as there are elements in 10), each one leading to a

facet F(!) , i e I° : then, on the third level, one finds the (n-2)-

dimensional faces of P , i.e. the facets of F(i), i c I ; from each

F(il), ii€ 10 one therefore has branches going to the faces F(il,i 2 )

with i 2 C I(I) C 10 ; and so on...the lowest level containing all the

O-diminsional faces (vertices) of P .

Note that this tree-structure is redundant because F(i ,...iq)

corresponds to one and the same face for all permutations of the indices

I ~ ~~ -_ _ . .. - __ i -. . - -, M- , . . , ..



i i q. in order to avoid this type of redundancy, it suffices

to generate the index sets jil,...,q] in a strictly increasing lexico-

graphic order. A more detailed description of the facial decomposition

method can be found in [4I. In particular, a method is given for

eliminating,ii the facial arborescence, another kind of redundancy

due to degeneracy. Ultimately, the nodes of the arborescence will

be in one-to-one correspondence with the faces of P.

Algorithmic principle: The face decomiosition of P furnishes, in quite

a natural way, an enumerative method to solve

linearly constrained quadratic problems. Consider a face F of P

generated at some level of the face decomposition:

A) If f is convex on F , then we know that it is convex on

every face and subface of F (Theorem 3). We may therefore solve the

convex quadratic problem:

minimize f(x) , subject to x e F

then store the optimal solucion x(F) remembering that

it is a candidate for the global optimum of the original

problem: minimize f(x) , subject to x c P

Furthermore, since x(F) is the optimum on F , there is

no need to investigate the faces and subfaces of F (Theorem 3)

individually: thus the branch can be terminated at F

B) If f is concave on F , then we know that the optimum

of the concave quadratic problem:

minimize f(x), subject to x e F

is attained on (at least) one vertex of F (theorem 6); one therefore

may proceed with the iace decompositionof P, without
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checking the concavity of f on each face and subface

of F , until the lowest level (the vertices) i6 reached.

The determination of the optimal vertex x(F) can be made

by (explicit or implicit) search in this set of vertices:

again, x(F) is stored as a candidate for the global

optimum of the original problem. Note that one may also

use here any other concave quadratic programming algorithm,

such as the ons studied in [21 and [7] for instance.

C) The third remaining case is that where f is neither

concave nor convex on F ; here one simply proceeds with the

facial decomposition of F , generating new faces which

must be tested for convex- or concavity.

Termiination: It is easily seen that an algorithm based on A), B), and

C) will terminate in a finite nunber of steps; indeed the

face decomposition generates a finite number of polyhedral sets (faces).

Thus the only point which could lead to an infinite sequence of numerical

operations is A); however, algorithms for convex quadratic problems on

a polyhedral set F (like the quadratic simplex algorithm) are con-

vergent in a finite number of steps.

Finally, one compares all the candidates x(F) obtained at the

termination of all branches and selects the "best" one(s) as the global

optimum(s).
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Concludixn Remarks:

The above algorithmic principle is not exempt of difficulties inher-

ent to the nature itself of the general quadratic problem over a poJyhedral

set P :

1) It may happen that f is "essentially concave" on P , that

is, that there are only relatively few faces F of dimension

greater t•an zero (i.e., other than vertices) where f is con-

vex. In this case, the efficiency of the algorithm is limited

by the same phenomenon as for the concave problems, namely the

large number of faces and especially vertices of P (this

number grows exponentially with the dimension of P , in

general). In order to avoid the explicit enumeration of all

the vertices of P , one has to use loweMr bound (for a mini-

mization problem) estimates in order to truncate branches

which are obviously suboptimal; this approach corresponds to

the classical branch and bound method. Its efficiency

critically depends on the ability of the bound

estimates to truncate relatively high -dimensional faces,

whrik requiring only a non-prohibitively large amount of com-

putations to obtain the bounding value. The developments here

are highly heuristic and problem-dependent and therefore,

outside the scope of thee paper.

2) Another disagreeable phenomenon is due to degeneracy in the

polyhedral set P . Indeed it may happen that the face

decomposition is geometrically redundant, while its



algebraic chari' 2rization by index sets (iI .. i q is not.- q

To clarify this point, let us simply mention that two faces

FI and F 9 with non-identica] index sets, i e.

1 1
F (i , ... iq) , 2 J).. r

with (iI..... q ..q F.

1it q1r

may be identical,from a practical poi-it of view,in that their

point sets are the same, i.c.

xI x e FI x K C F,.

Degeneracy can be observed in the construction of the minimal

sets I , however, and may thereforo be eliminated from the

tree-structure by aporopriate bookkeeping. Since this is not

i,•mvediately pertinent to the quadratic progranmming aspect but

rather stems intrinsically from the face decomposttior. of P , the

interested reader is referred *o [4 1 for further details.

3) For the case where the dimension of P is not prohibitively

large (say lEs, than 50 to 100) and where thc non-convexity

of f is not dominant, i.e. a;here f is convex on all (but

a few) low-din,'ensioaal faces, the present approach seems prom-

ising particularly in view of the .4herent difficulty of this

type of problem. In any case, it is not difficult to find

problems where the approach presented here is clearly superior

to cuCting plane t&-chnique•, simply- because it does not entail

rhe convergence obsta,les iets indd by the latter.
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4) Relation to other work.

A similar approach to the facial decomposition has been sketched by

Murty in [13]. He shows that the optimal solution can be found in a finite

list of optimal solutions to convex quadratic subprcblems. Tlhe list of sub-

problems is obtained from a full combinatorial arborescence of affine sets,

defined by

X1 xi *.. X. = 0 , i C M

where 0 < k < n ;

Finiteness of the procedure follows because:

k n--
a) There are at most A C < 2 distinct affine sets in

k=zo

the arborescence;

b) Only the reduced problems which are of the convex quadratic

type need be solved (in finitely many steps).

In Murty's procedure m1 = r + (n - k) new subproblems are generated in the

arborescence for every affine set S(n 1 , mI) of dimension n, = (n - k)

with proper ties

(ii) S(n 1 , mIn) intersects the feasible set,

(iii) The objective function f is not convex on S(n 1 , mi1 )

(Note that if no additional bookkeeping organization is implemented this

procedure generates the same affine set k! times, corresponding to the per-

mutations of il,...,ik)

The facial decomposition algorithm presented in section 4 generates distinct

subproblems and their enumeration is curtailed according to the remarks below
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1) Only faces of the feasible set P , i.e. only those affine sets

S(nl,m,) which are known a priori to intersect P , are

generated.

2) Because the convexity tests indicate that f is either conve___x

or concave or neither convex nor concave on the particular

face S under consideration, there is no extra cost for using

this information (when the function to be minimized (maximized)

on S turns out to be concave (convex)). Indeed, when f is

concave on S , we know a priori that the vertices of S can

be generated directly with no additional convexity test (see

part B) of the algorithmic principle and STEP 4 B of the algo-

r i thm).

Finally let us note that, in general, the above remarks 1) and 2) may

be expected to generate, for the amount of computations of the facial decomposi-

tion method, a reduction which grows exponentially with the dimension n of

the problem as compared to the approach of [13].
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4) Computational aspects.

Consider the set of linear constraints

A' x' < b

where x > 0

A' is an m by O matrix

San n-vector (x1, • . x

b an m-vector (b n+l,*..bn+m)

As customary in linear prograi ing, let us introduce slack variables

xk

X k = b k - r a jxj k =n+l,..,nero
, ,

System (3) then becomes

Ax b (4a)

x > 0 (4b)

with A = (A', I m) where I is a m by m unit matrix,

and X = (xl,...,XnXn+l,...Xn~m) .

Furthermore, take the objective function f(x) to be defined by

f(x') = x'TCx" + Dx' + fo (5)

where C is a n by n symmetric matrix

D an n-vector

f a scalar.

(This is the general form for a quadratic function in n variables

x
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Substituting into a quadratic form:

A face F i of P characterizes a set of variables

Xj, J e J which are kept at value zero

X. = 0 Vje JC [l,2, a..,n,n+l,...,n-n) = M (6)
J

and we need represent the quadratic function f in the affine space Ai[(FJ)

defined by (6). Consider a basis B for the system (4), where the set

J is contained in the non-basic set. The general solution to (4a) can

be described by

S= b - B INxN (7)

where B is a set of T" linearly independent colums of A , forming a

non-singular m by m matrix (basis);

and N contains the remaining columms of A ; the variables xB are

called "basic" and xN "non-basic."

A general point in the affine space Aff (Fj) defined by (6) then

reads

S= B'1b - BI Nj XNN (8a)

;N arbitrary (8b)

xj = o (8c)

where the matrix N is obtained from the submatrix N by deleting the

columns corresponding to j e J .

Let us substitute (8) into (5) in order to obtain the expression for

the function f , restricted to a smaller domain of definition, namely

Aff (F 1 ) J
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Since only the original variables x = (x,,x2....,x) are present

in the argument of the function f , we only need substitute for the

variables x. e £ (1,2,... ,n] and basic, i.e.

= (E-)-b - (B )'N 1 N (9)

5 9b - 8N1 "j , where 8 denotes the matrix (B-)

obtained from (B-) by deleting the rows corresponding to basic variables x.I

4 e

Let us now substitute (9) into (5), yielding

-T

f b Nb C 5b - +

+, b- 3NNj 4 r E

,o T
-z j Dj Cjb + DXbj +

" (-D$N bT \v' - - N T Cab)

T T

x.N N CNjx + DNx C (10a)Sj J i Nj DjjNj (INJ 
J

where

C_ = V C • which is (again) a symmetric matrix (lOb)

Di = + 2 bT C j) (lOc)

f f + D 1, + b. C b (1Od)
J I-
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Thus, one obtains for f, restricted to Aff (F J), a function

f(N IT ) which is again a (general) quadratic function.

Testing the convexity of a quadratic form.

It was indicated in section 3 that one of the major ingredients of

the algorithmic principle developed there is the test for convexity (and

concavity) of the given quadratic objective function on a subset Fj of JL
its domain of definition. To be precise, we must repeatedly explore the

definiteness of f (x) , for x e E Z P , i.e. on a face F of P

According to the above result (10), this task can be seen to consist

in finding the definiteness of the quadratic form in the (n-J) variables

NJ
TT

fj(x) f + D NjXN + xT NT C N (10)
J JJ 0 J J 3NJ xJJJJ'

One has:
T

f is convex if the symmetric matrix N3 CT CN is positive

(semi-) definite;

hence, it is sufficient to investigate the definiteness of the symmetric

matrix

C NjT T CýNJ (10a)

There are many theoretical and practical approaches, concievable at this

point and we present but one method below, chosen because it seems

adequate:
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Consider the quadratic function

g(X) C, (11)

where C is a symmetric k by k matrix; setting

k
y C , or Y i Z c 1,2,..., k (12)

j-"

g(x) becomes the scalar product xýy of the k-vectors x and y

k
g( )W =y r X. y

Now. by pivoting in a non-zero diagonal element of C (say c1 1 ) one

can express a variable x . (here xI) in terms of the (k-l) remaining

3. variables and one y variable (here yl) ; this operation is known

as a gaussian exchange(principal pivoting)in the linear system (12).

More concretely, one has after the gaussian exchange with pivot

(*0)
c11

/ k k C"X ( '.YI + Z el'X" j) Z Yi + • - J (13a)

C j-2 C1 1  j=2 c.l

- -, c.1~
. . . k -- C l k" l 7 . .

and for i= 2,..,k:y+ E 2 C +c C E1 ... x. - --i.-t- + c1.x.;

j- J=2 c1 1  j=2

C il k i C •

_ I + Z cj C- ) (13b)

.3: j=2 \ - l
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Let us now replace x and y. bY their respective expressions

(13) in &(x-)

k k c ~ k Zk

s-2 c 8-2 J=21

kj2 c k c k

1l + Y " C (14)C J3 2 j = -j-

Cll

since Ca for J a by syt2u.try of C

Furthermore, by construction, the matrix C is again symmetric:

cJs "=j - a " aj " c- C°j (15)
c c 11

2
Now since Y2 > 0 , one has the necessary condition:

g positive definite - ~C > 0

11I
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and similarly

g negative definite c < 0

The test for strict convexity of the given (general) quadratic func-

tion f , on a restricted domain of definttion (Aff F.) can be made as

follows:

Step 1: Check that all elements cii of C in the diagonal are

positive; if this is not the case then g is .no strictly

convex; stop

Step 2: Pivot on c11  and generate the new symietric matrix C ; note

that the number of rows and columns of C is one less than

for C3 ; go to Step 1.

In at most (n-J) iterations this procedure shows that Ci is positive

definite or not.

Remarks: Since the gaussian elimination is always applied to a syuMetric

matrix, yielding a new matrix which is again symmetric, explicit

computations need only be carried in the upper triaagular part

of C ; this represents a substantial. reduction in the number

of necessary operations. In fact principal pivoting is

a standard manipulation in mathemat 'cai programming, which

can be done efficiently.

Vote that in Step 2, the choice of c1 1 was arbitrary; in fact

an efficient algorithm will try to exhibit non-convexity as soon

as possible; thus one will choose the index i of the principal

pivot c if with greater care.
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Outline of the algorithm:

We may now summarize the various results obtained in the previous

sections into an algorithm to solve general quadratic, linearly con-

strained problems. The algorithm described below is but one version uf

the principle presented at the end of section 3. Since numerical compu-

tations are still at an experimental stage, it is difficult to assess

the computational efficiency of one version with respect to another,

especially when the differences stem from programming details rather than

basically different approaches. The algorithm below was chosen because

of its relative simplicity of exposition combined with a robust n;umerical

performance.

The algorithm requires the following quantities:

two (n+l)-arrays : m , m, fO:n] and (n+l) "dynamic" arrays (at most

(n+m) dimensional) : I[o; I ,I[I; I ,...,l[n; .

The result is found in the (n+¶)-array xOPT with the optimal value

for f denoted by OPT

STEP 0:

Let t : iteration index (level in the arborescence)

m : pointer

I : minimal index set

l Ttnumber of elements in I

OPT: currentoptimal value for f over P

initialization: t : - ; m[O] :1 I ; 110; 1 : = minimal set of P;

mI [0) = number of elements in I ; OPT = + m (minimization)

I . ... .. n iil lli I n lnl iUmum unt n. .. ,. .. ra ,.. ,-.0
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S'IEP 1:

- Test the definiteness of f on the effine set: Aff(F t-)

Ait (Fi•t {I xj = 0 , for all j - tLo;mtm ,..., I-l;-t-•

- If f is conveA then go to SUEP 4a ;

- If f is concave then go to S7EP 4b ;

STEP 2:

- Find the minimal indexst lit; ] of the polyhedral set F

f (AJ)x x b

x >0
-- 0 , for all J ILO;m[OJ1...

L L ,t~t-I ;m[ t-l

- Denote Ly mI[t] the number of elements in lit; ]

S TE P 3:

- Let m[t] ;

t :t.+l

- go to STEP I

STEP 4a:

- Solve the -.onvex quadratic problem:

minimize f(x) , subject to x e F t.

(using one of the quadratic simplex algorithms, for instance).

- go to STEP 5
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STEP 4b:

- Solve the concave quadratic problem

minimize f(x) , subject to x e Ft.

(This can be done by determination of the vertices of Ft_1 ,for

instance; these vertices are obtained by iteratively computing STEP 2

and STEP 3, bypassing STEP 1, until t = n where the 0-dimensional faces

are generated [4]).

STEP 5-:

- Denote by f and x the optimal solution obtained in STEP 4.

- If f < OPT then set XOPT :x

OPT : =

STEP 6:

- if m{t-l] < mIft-l] then

set m[t-l] mIt-li + I and go to STEP 1.

Otherwise

- set t : - t-I

- if t > 0 then go to STEP 6

- if t = 0 then SO : the global optimum is xOPT ' with value OPT

The algorithm can be seen to contain the following components:

Branch-identification phase (STEP 2) : Given a (n-t)-dimensional fac.e

F of the n-dimensional polyhedron P , the minimal set

I[t; I is constructed, which identifies all the (n-t-l)-

dimensional facets of F tt-I
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Convexity test phase (STEP 1) : Given a subspace Aff (Ft 1 ) one calcula•'-.

the restricted functtou f t- , and, by principal pivoting,

finds out if f- is conv'ex, concave or neicher.

Convex (oi concave) programming phase (STEP 4) : Knowing that the pro-

gramnming subproblem

minimize ftl (x) , subject to x e Ft. 1

is either convex or concave, one finds the optimal solutio7.(s),

by applying the respective algorithm.

Ordering and choice routines : Each array lit; ] is constructed and

arranged in an arbitrary but fixed way and the choice in STEP 6

amounts to a well-defined but arbitrary order in which the

faces of P are generated and examined.

in fact, the arborescence constructed by the algorithm

is guided by the following two rules:

Forward choice rul. (STEP 3): Given a (n-t)-dimensional

affine space Aff (F ti) for which the convexity

test has indicated that f is neither convex nort-i1

concave, STEP 3 chooses one (the "first" one)

(n-t-l)-dimensional affine space which is a subspace

of Aff (F ; clearly, because of the arbitrary

order in Ift; I , this choice is well-determined

but arbiLrary.

Backtrack-choice rule (STEP 6): Given a (n-t)-dimensional

affine space Aff (Ft-l) where the function f (i.e. f tl)



is c.ither cur\tO: 14 wz!L,,•, w i LWtolat. the curre "

branch can be I, -ru,:d bucaus- tLie c,:Limai olution cor-

respcaJ-zi-g I,, ;::Xiat affi nc spacc: is looad in STEP 4; here

S'1i'P 6 c!hLocse• the. ne,-t c, Latra! n-t)--dimensional

affiuc ý,) ctc, ;;l-,- in tie pointer nmi4-l] by one;

if there is no ,:uci -et (,i.e. iLt ,] 'j m IIt-l] ) , STEP

6 backtracks tc the r-_evi us levei, redacing t by one,

and chooses the next collateral (n-t-].)-dimensional affine

space. qere agair., the sequence in which affine spaces

are chosen is determined by the order within the

index sets Ift-l; ] and Ift-2; j , arid it is therefore

wel1-definer ot arbitmary.

The reader familiar with branch and bound proce2dures will recognize

here the immediate possibilit.v' Cc-' overvtual impcovemenes of the overall

efficiency by making use of a rnore elaboracz choice VoIe which selects

every element of the iiiiex se!" lit.. Aac,:I, once but in a certain

order of preference ,iefind b a,.iditi,-al. comiputat.ois. To be efficient

this technique must be -orn d vit!h Lira I-ound ett:L ates mentioned in

section 3 and no effotr is niade to -I . nco tht art involved by such an

approach.

, i I I n i i I ... I -I II -li i I i i



i/An iintersting, surv.Ž, .1- j,- I 14i fln ,ial:-- an" pscudo-convey

by W. C. Mv]anik v C" i al A. i- r ýIý , ,I `••;,, a arch ; these
are .,peciai cases n 'tO.-cLouvti- ¢iljdr, ic i Cg which call still

be ,ulved in very :,icn,) tJ; .:,.i' programs by

some algorithms. Ttnse: c. .igenvalue,
whik. the ý:,eneral case con: i i, r] hir. %ay have a-iibtrary cigenvalues
(>0, =-0 T r ,z,,t o xten Li sn ot

Lemke 's al,.:or ithm LO -o lit

2 In [12) . u'MeoeL - ,- . '. 1 t o,-. . . u s ic approach,

making use cf properties -:'-iiar to tiosc- prcsented in section 2.

-- A closely related approach ha" .ee - st . 13.1. !i aid is briefly
compared with the present onr at the .:!d 0t7lOeCrIoL 3.

-iA similar result has been -p, ove, ly ;.uei-i- in 121

I
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